Blind Compressed Sensing Dynamic MRI

نویسندگان

  • Sajan Goud Lingala
  • Mathews Jacob
چکیده

Introduction: Achieving high spatio-temporal resolutions in dynamic MRI (DMRI) (eg. myocardial perfusion MRI) is often challenging due to the slow nature of MR acquisitions. Recently, several schemes that exploit the low-rank property of dynamic datasets were introduced to accelerate dynamic MRI [eg: 1-3]. These methods exploit the similarity of the voxel time profiles (intensity variations as a function of time) by expressing them as a linear combination of a few orthogonal temporal basis functions. Since the temporal bases and their coefficients (spatial weights) are estimated from the under-sampled Fourier data itself, this representation is termed as the blind linear model (BLM). This method provides good image quality at high accelerations, when the inter-frame motion is not very significant. However, the similarity of voxel profiles often degrades significantly with inter-frame motion (eg. free breathing perfusion). Since more basis functions, and equivalently more coefficients, are required to accurately represent the resulting dataset using BLM, the maximum acceleration that can be achieved using BLM degrades significantly with inter-frame motion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating dynamic imaging of the lung using blind compressed sensing

Background Real time dynamic lung MRI is a promising tool to noninvasively assess lung function and mechanics. However, it potential is not realized in the clinic due to the restricted spatio-temporal resolution and volume coverage. The main focus of this work is to overcome these drawbacks using the recent blind compressed sensing (BCS) scheme [Lingala et al., IEEE TMI 2013], which enables rec...

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Highly-Accelerated First-Pass Cardiac Perfusion MRI Using Compressed Sensing and Parallel Imaging

INTRODUCTION: First-pass cardiac perfusion MRI is a promising modality for the assessment of coronary artery disease. Recently developed dynamic parallel imaging techniques, such as k-t SENSE [1] and k-t GRAPPA [2], can be used to perform up to 10-fold accelerated perfusion imaging by exploiting the difference in coil sensitivities and spatio-temporal correlations. Such techniques can be used t...

متن کامل

Improved k-t FOCUSS using a sparse Bayesian learning

Introduction: In dynamic MRI, spatio-temporal resolution is a very important issue. Recently, compressed sensing approach has become a highly attracted imaging technique since it enables accelerated acquisition without aliasing artifacts. Our group has proposed an l1-norm based compressed sensing dynamic MRI called k-t FOCUSS which outperforms the existing methods. However, it is known that the...

متن کامل

Motion estimated and compensated compressed sensing dynamic magnetic resonance imaging: What we can learn from video compression techniques

Compressed sensing has become an extensive research area in MR community because of the opportunity for unprecedented high spatio-temporal resolution reconstruction. Because dynamic magnetic resonance imaging (MRI) usually has huge redundancy along temporal direction, compressed sensing theory can be effectively used for this application. Historically, exploiting the temporal redundancy has bee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011